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Abstract. Because of the essential difficulty caused by the non-vanishing boundary condition,
a systematic perturbation approach for dark solitons has not yet been found. Based on a rigorous
proof of the completeness of the squared Jost solution with explicit expressions for one-soliton
case, a direct perturbation approach for dark solitons is developed in this paper. Difficulties
caused by the background are overcome. As an example of the approach, the problem of
damping is treated as a perturbation.

1. Introduction

Under ideal conditions, the well known nonlinear Schrödinger (NLS) equation

ipt − σpxx + 2|p|2p = 0 (1)

governs the evolution of temporal optical solitons (see, e.g., [1] and references therein) in
fibres and spatial optical solitons (see, e.g., [2, 18] and references therein) in waveguides.
In the case ofσ = −1, i.e. the case of the abnormal group-velocity dispersion (GVD) for
temporal solitons or self-focusing media for spatial solitons, equation (1) has bright soliton
solutions under vanishing boundary conditions. In the case ofσ = 1, i.e. the case of the
normal GVD or self-defocusing media, equation (1) has dark soliton solutions under non-
vanishing boundary condition (with background). Higher-order effects are usually treated
as small perturbations.

For a nonlinear evolution equation under a perturbation of strengthε (0< ε � 1), the
zeroth-order approximation to the perturbed equation, as is well known, cannot be an exact
soliton solution, otherwise the first-order correction will not remain small for a long time.
In order to eliminate such so-called secular behaviour, one should allow free parameters in
the exact soliton solution to modulate on the slow time scaleεt [10]. Thus the zeroth-order
approximation is an adiabatic solution, where free parameters in the exact soliton solution
evolve adiabatically following up the perturbations.

In the case of vanishing boundary, there exist two systematic perturbation methods:
the method based upon IST (see, e.g., [7–9]) and the direct method (see, e.g., [10–15])
based upon the theory of linear partial differential equations. Another method based upon
conservation laws (see, e.g., [16]) to get evolution of soliton parameters is also widely used
but it should not be regarded as a systematic method, because no correction higher than the
adiabatic solution can be obtained within its framework.
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In what follows, we will first review the main strategies of the perturbation theories
for vanishing boundary case, then the essential difficulties in generalizing them to the non-
vanishing boundary case.

In the framework of IST, for a completely integrable nonlinear evolution equation,
poles of the transmission coefficient are independent of time. However, in the presence of
perturbations, they will depend on time. In the perturbation method based upon IST [7–9],
the idea of an adiabatic solution is realized by keeping the first Lax equation, which yields the
inverse scattering equations, and giving up the second one, which determines evolution of the
scattering data. Instead of the abandoned second Lax equation, an inhomogeneous equation,
whose homogeneous version is the first Lax equation is derived to consider the demands
of the perturbed equation. Then its solutions can be represented by linear combination of
the solutions of the first Lax equation, the Jost solutions. Owing to the vanishing boundary
condition, the asymptotic behaviour of the Jost solutions yields the time dependence of the
scattering coefficients and the spectral parameters.

Despite various formats used by different authors, the main strategy of the direct
method [10–15] is

(i) To linearize the perturbed equation by multiple time scales. The first-order equation is
a linear inhomogeneous equation of the first-order correctionq, Lq = R.

(ii) To solve the eigenvalue problem of the linear operatorL, L8 = λ8, and the associated
eigenvalue problem of its adjointLA, LA8A = λA8A.

(iii) With the adjoint eigenfunctions, the inner products can be defined. If a complete set
of eigenfunctions can be constructed,q can be expanded with the complete set.

(iv) Usually the discrete terms are secular. Thus the corresponding expansion coefficients
must be set to zero in order to cancel these secular terms. These are the so-called
secular conditions, governing the evolution of all free soliton parameters. The zeroth-
order approximation, i.e. the adiabatic solution, is then obtained.

(v) After removing the secular terms, the sum of the remaining terms is the first-order
correctionq.

In general, as emphasized by some authors (see, e.g., [10, 15]), the method needs no
knowledge of the IST except the generalN -soliton solution. However, results of IST are
very helpful in solving the eigenvalue problems. Usually8 and8A can be constructed with
the squared Jost solutions. Proof of the completeness of the set of squared Jost solutions,
the foundation of the direct method, also depends on results of the IST. In the vanishing
boundary case, completeness of the set of squared Jost solutions of Zakharov–Shabat eigen
equation was proved under the assumption of compact support [6]. The direct perturbation
theory (also called Green’s function perturbation theory) has been well established for nearly
integrable systems [10–15].

For the dark soliton case (σ = 1), let p = uei2ρ2t , in which ρ is a positive constant,
equation (1) becomes

iut − uxx + 2(|u|2− ρ2)u = 0 (2)

which is called the NLS+ equation. Under non-vanishing boundary conditions

u→
{
ρ x →+∞
ρeiθ x →−∞

(3)

equation (2) has dark soliton solutions, e.g., the one-soliton solution:

u1(x, t) = e−iβ1{λ1+ ik1 tanhθ1} (4)
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in which

θ1 = k1(x − x1− 2λ1t) (5)

ζ1 = λ1+ ik1 = ρeiβ1. (6)

As mentioned above, in the presence of perturbation, poles of the transmission coefficient
(ζ1 for one-soliton case) will be dependent of time. Thenλ1, k1, ρ, β1, and possiblyx1

are all t-dependent. The magnitude of the boundary condition values,ρ, and the phase
difference between each end of the boundary values,θ (θ = −2β1 for one-soliton case),
are thereforet-dependent as well. The evolution of the boundary condition values (the
background) under perturbation is an essential difficulty. The existence ofθ also makes it
impossible for any attempt to separate the background from the NLS equation and directly
generalize the perturbation theory for bright solitons to that for dark solitons.

Without vanishing boundary conditions, the usual deduction of the perturbation method
based upon IST seems very difficult because the asymptotic behaviour of Jost solutions
is related to thet-dependent non-vanishing boundary condition values (the background).
There appears to have been no attempt to develop such a method up till now.

The direct method faces similar difficulties as the method based on IST:

(i) Without a vanishing boundary, it is hard to find the adjoint operatorLA and the
corresponding eigenfunctions.

(ii) The potential in the Lax equations has no compact support. The proof of the
completeness of the squared Jost solutions based on the assumption of compact
support [6] is no longer valid.

(iii) Non-vanishing boundary means an infinite background energy which may cause
divergence in calculations.

An earlier attempt at direct method [17] was proposed. However, since the evolution of the
background, the most crucial and difficult point of the perturbation theory for dark solitons,
is not dealt with at all in [17]; it is not successful in general. The obtained relations between
small variations of the scattering data and the nonlinear field are obviously incorrect in view
of the non-vanishing boundary condition. Hence the proof for completeness of the squared
Jost solutions with these relations is also unfounded.

The adiabatic method [18, 19] based upon an attempt to separate the background from
the NLS+ equation has also been proposed. As mentioned above, such a separation is
impossible because of the existence ofθ . Also, it has been found the method has a difficulty
in self-consistency: results from the first perturbed conservation law contradicts that from
the second and third ones [20]. Nevertheless, it is interesting that the formulae given by
this method yields some correct final results, except that no shift of the soliton centre (zc

in this paper) can be predicted.
The small-amplitude approximation [5] transformed the NLS equation into a KdV

equation in the small-amplitude limit, in order to use the mature perturbation theories for the
KdV equation. However, considering the different symmetries between the NLS equation
and KdV equation under inversion ofx, the approximation is too drastic.

As a conclusion, a systematic perturbation theory has never been successfully developed
for dark solitons. In this paper, we develop a direct perturbation theory for dark solitons.
The three difficulties mentioned above are overcome by the following tricks:

(i) We find that it is appropriate to define the adjoint states and the corresponding inner
products in a manner similar to that for bright solitons [6], because such a definition
yields orthogonalities of the continuum squared Jost solutions and the completeness of
the set of squared Jost solutions can be proved under such a definition.
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(ii) We directly substitute the explicit expressions of the squared Jost solutions to prove
completeness.

(iii) We find the divergent terms appearing in one of the secular conditions are all in the
form of 2L (the size of the system). This secular condition should yield two equations:
one for the finite terms, the other for the 2L terms. The latter governs the evolution of
ρ, the magnitude of the background.

As a result, simple formulae for the evolution of all soliton parameters are presented. The
formula for calculating the first-order correction is also obtained, though it is hard to get an
exact analytic result. The problem of damping is studied as an example.

2. Some results of the NLS+ equation

Dark soliton solution and Jost solutions of the NLS+ equation (2) under non-vanishing
boundary conditions (3) are well known [4, 21, 22], we just list the results which are helpful
in constructing a direct perturbation theory. In what follows, the bar denotes complex
conjugate andσi (i = 1, 2, 3) are Pauli matrices.

The corresponding Lax equations of (2) are

∂x8(λ) = L(λ)8(λ) (7)

∂t8(λ) = M(λ)8(λ) (8)

where the Lax pair is

L(λ) = −iλσ3+ U (9)

M(λ) = i2λ2σ3− 2λU + i
(
U2− ρ2+ Ux

)
σ3 (10)

with

U =
(

0 u

u 0

)
. (11)

Because a double valued function ofλ

κ =
√
λ2− ρ2 (12)

will appear in the asymptotic solutions of (7) as|x| → ∞, an auxiliary parameterζ can be
introduced to make

λ = 1
2

(
ζ + ρ2ζ−1

)
and κ = 1

2

(
ζ − ρ2ζ−1

)
(13)

become single-valued functions ofζ [21, 22]. With asymptotic solutions of (7),E(x, ζ ) (as
x →+∞) andE−(x, ζ ) (asx →−∞), usual Jost solutions are defined as

9(x, ζ ) = (ψ̃(x, ζ ) ψ(x, ζ ))→ E(x, ζ ) as x →∞ (14)

and

8(x, ζ ) = (φ(x, ζ ) φ̃(x, ζ ))→ E−(x, ζ ) as x →−∞. (15)

Here

E−(x, ζ ) = e
1
2 iθσ3E(x, ζ ) (16)

and

E(x, ζ ) =
(

1 −iρζ−1

iρζ−1 1

)
e−iκ xσ3. (17)



A direct perturbation theory for dark solitons 6933

8(x, ζ ) and9(x, ζ ) are not linearly independent:

φ(x, ζ ) = a(ζ )ψ̃(x, ζ )+ b(ζ )ψ(x, ζ ) (18)

φ̃(x, ζ ) = b̃(ζ )ψ̃(x, ζ )+ ã(ζ )ψ(x, ζ ). (19)

ψ(x, ζ ), ψ(x, ζ ) and a(ζ ) can be analytically continued to the upper half-plane of
complex ζ , while ψ̃(x, ζ ), ψ̃(x, ζ ) and ã(ζ ) can be analytically continued to the lower
half-plane ofζ . Usually b(ζ ) and b̃(ζ ) cannot be analytically continued outside the real
axes.

Since two values ofζ correspond to a single value ofλ, under the transformation
ζ → ρ2ζ−1, the Jost solutions have the following so-called reduction relations:

ψ̃(x, ρ2ζ−1) = iρ−1ζψ(x, ζ ) ψ(x, ρ2ζ−1) = −iρ−1ζ ψ̃(x, ζ ) (20)

φ(x, ρ2ζ−1) = iρ−1ζ φ̃(x, ζ ) φ̃(x, ρ2ζ−1) = −iρ−1ζφ(x, ζ ). (21)

Also

ã(ρ2ζ−1) = a(ζ ) (22)

and

b̃(ρ2ζ−1) = −b(ζ ) ζ real. (23)

The zeros ofa(ζ ) are located on a circle of radiusρ centred at the origin

ζn = ρeiβn 0< βn < π (24)

or

ζn = λn + κn κn = ikn kn > 0. (25)

In the case of non-reflection

φ(x, ζ ) = a(ζ )ψ̃(x, ζ ) φ̃(x, ζ ) = ã(ζ )ψ(x, ζ ) (26)

θ = −2
N∑
n=1

βn (27)

a(ζ ) = e
1
2 iθ

N∏
n=1

ζ − ζn
ζ − ζ n

. (28)

Whena(ζ ) has only one zeroζ1, the usual IST procedure yields the one-soliton solution (4)
and the corresponding Jost solutions (see the appendix). In order to satisfy the second Lax
equation(8), the Jost solutions should be corrected as

φ(x, t, ζ )→ h(t, ζ )φ(x, t, ζ ) φ̃(x, t, ζ )→ h−1(t, ζ )φ̃(x, t, ζ ) (29)

ψ̃(x, t, ζ )→ h(t, ζ )ψ̃(x, t, ζ ) ψ(x, t, ζ )→ h−1(t, ζ )ψ(x, t, ζ ) (30)

with

h(t, ζ ) = ei2κλt . (31)
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3. The perturbed NLS+ equation and the squared Jost solutions

The perturbed NLS+ equation can be written as

ivt − vxx + 2(|v|2− ρ2)v = εr[v] (32)

whereε is a small parameter andr[v] is a functional ofv for most higher-order effects of
dark solitons. Consider an approximate solution of (32) up to first order:

v = u+ εq (33)

with the initial condition

v(x, 0) = u(x, 0) (34)

whereu(x, 0) is the exact soliton solution of the unperturbed NLS+ at t = 0. According
to the idea of adiabatic solutions, the zeroth-order approximationu cannot be the exact
solution of (2) or it may cause secular behaviour of the first-order correctionq [11]. In
order to reduce those secular terms, parameters inu must evolve with temporal scale of
(εt). Introducing the multiscale expansion

∂t =
∞∑
n

εn∂tn (35)

in which tn = εnt (n = 0, 1, 2, . . .) are treated as independent variables as usual, to first
order inε we have

iut0 − uxx + 2(|u|2− ρ2)u = 0 (36)

and

iqt0 − qxx + 2(2|u|2− ρ2)q + 2u2q = R[u] (37)

whereR[u] = r[u]− iu′ is the effective source (the prime means a derivative with respect to
t1). Having obtained an expression for the effective source, it is not necessary to distinguish
t0 and t . Together with the complex conjugate of (37), we have{

i∂t −L(u)
}
q = R (38)

in which

L(u) =
(
∂xx − 2(2|u|2− ρ2) −2u2

2u2 −∂xx + 2(2|u|2− ρ2)

)
(39)

and

q =
(
q

q

)
R =

(
R

−R
)
. (40)

Equation (38) is a linear inhomogeneous equation, whose solutions can be expressed by a
linear combination of the solutions of its corresponding homogeneous equation

{i∂t −L(u)} q = 0. (41)

It is easy to show that if

w =
(
w1

w2

)
(42)

is a solution of the unperturbed Lax equation (7) and (8), then

W(x, t, ζ ) =
(
w2

1(x, t, ζ )

w2
2(x, t, ζ )

)
(43)
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is a solution of (41), and thus

h2(t, ζ )

(
φ2

1(x, t, ζ )

φ2
2(x, t, ζ )

)
h−2(t, ζ )

(
φ̃2

1(x, t, ζ )

φ̃2
2(x, t, ζ )

)
(44)

h2(t, ζ )

(
ψ̃2

1(x, t, ζ )

ψ̃2
2(x, t, ζ )

)
h−2(t, ζ )

(
ψ2

1(x, t, ζ )

ψ2
2(x, t, ζ )

)
(45)

are solutions of (41). Defining the squared Jost solutions as

8(x, t, ζ ) =
(
φ2

1(x, t, ζ )

φ2
2(x, t, ζ )

)
8̃(x, t, ζ ) =

(
φ̃2

1(x, t, ζ )

φ̃2
2(x, t, ζ )

)
(46)

9̃(x, t, ζ ) =
(
ψ̃2

1(x, t, ζ )

ψ̃2
2(x, t, ζ )

)
9(x, t, ζ ) =

(
ψ2

1(x, t, ζ )

ψ2
2(x, t, ζ )

)
(47)

we have {
i∂t −L(u)

}
8(x, t, ζ ) = 4κλ8(x, t, ζ ) (48){

i∂t −L(u)
}
8̃(x, t, ζ ) = −4κλ8̃(x, t, ζ ) (49){

i∂t −L(u)
}
9(x, t, ζ ) = −4κλ9(x, t, ζ ) (50){

i∂t −L(u)
}
9̃(x, t, ζ ) = 4κλ9̃(x, t, ζ ). (51)

In the case of one soliton, it is convenient to discuss the problem in a tracing frame of
reference (TFR) which is moving with the soliton, i.e. to make the transformation

t, x → t, z (52)

where

z = x − x1− 2λ1t. (53)

Thus

∂t , ∂x → ∂t − 2λ1∂z, ∂z. (54)

In the TFR, we can definet-independent Jost solutions:

φ(z, ζ ) = eiκ(x1+2λ1t)φ(x, t, ζ ) (55)

φ̃(z, ζ ) = e−iκ(x1+2λ1t)φ̃(x, t, ζ ) (56)

ψ(z, ζ ) = e−iκ(x1+2λ1t)ψ(x, t, ζ ) (57)

ψ̃(z, ζ ) = eiκ(x1+2λ1t)ψ̃(x, t, ζ ) (58)

and the corresponding squared Jost solutions

8(z, ζ ) =
(
φ2

1(z, ζ )

φ2
2(z, ζ )

)
8̃(z, ζ ) =

(
φ̃2

1(z, ζ )

φ̃2
2(z, ζ )

)
(59)

9(z, ζ ) =
(
ψ2

1(z, ζ )

ψ2
2(z, ζ )

)
9̃(z, ζ ) =

(
ψ̃2

1(z, ζ )

ψ̃2
2(z, ζ )

)
. (60)
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Then equations (48)–(51) become the following eigenequations:

L(z)8(z, ζ ) = −4κ(λ− λ1)8(z, ζ ) (61)

L(z)8̃(z, ζ ) = 4κ(λ− λ1)8̃(z, ζ ) (62)

L(z)9(z, ζ ) = 4κ(λ− λ1)9(z, ζ ) (63)

L(z)9̃(z, ζ ) = −4κ(λ− λ1)9̃(z, ζ ). (64)

These mean that the eigenfunctions of the linear operatorL have been constructed with the
squared Jost solutions. Atζ1, we have

L(z)8(z, ζ1) = 0 L(z)9(z, ζ1) = 0 (65)

L(z)8̇(z, ζ1) = 4k2
1ζ
−1
1 8(z, ζ1) L(z)9̇(z, ζ1) = −4k2

1ζ
−1
1 9(z, ζ1). (66)

Here the dots denote derivatives with respect toζ . Explicit expressions for sucht-
independent Jost solutions and squared Jost solutions for one-soliton can be found in the
appendix.

4. Closure of the squared Jost solutions

4.1. Inner products and orthogonalities

As in the case of bright solitons [6, 14], it is probable that8(ζ), 8(ζ1), 8̇(ζ1) and their

counterparts̃8(ζ), 8̃(ζ1),
˙̃
8(ζ1) construct a complete set. If such a probability comes true,

any solution of (38) can be expanded with them, i.e.

f (z) = − 1

2π

∫
C

dζ f (ζ )8(z, ζ )+ f18(z, ζ1)+ g18̇(z, ζ1)

− 1

2π

∫
C̃

dζ f̃ (ζ )8̃(z, ζ )+ f̃18̃(z, ζ1)+ g̃1
˙̃
8(z, ζ1). (67)

HereC is a line on the upper half-plane ofζ , from−∞+ i0+ to +∞+ i0+, while C̃ is on
the lower half-plane, from−∞− i0+ to +∞− i0+. Such a choice of integral path comes
from the fact that8 and 8̃ are analytic on the upper- and lower half-plane, respectively.
However, equations (20) and (21) yield the reduction relations of the squared Jost solutions:

8̃(z, ρ2ζ−1) = −ρ−2ζ 28(z, ζ ) (68)

8̃(z, ζ 1) = −ρ−2ζ 2
18(z, ζ1) (69)

˙̃
8(z, ζ 1) = ρ−4ζ 4

1 8̇(z, ζ1)+ 2ρ−4ζ 3
18(z, ζ1). (70)

For an arbitrary functionf̃ (ζ ), we have∫
C̃

dζ f̃ (ζ )8̃(ζ ) =
∫
C̃

dζ f̃ (ζ )(−ρ2ζ−2)8(ρ2ζ−1) = −
∫
C

dζ f̃ (ρ2ζ−1)8(ζ ). (71)

Thus, equation (67) should be rewritten as

f (z) = − 1

2π

∫
C

dζ f (ζ )8(z, ζ )+ f18(z, ζ1)+ g18̇(z, ζ1) (72)

i.e. because of the reduction relations,8̃(z, ζ ), 8̃(z, ζ1) and ˙̃8(z, ζ1) are not linearly
independent of their counterparts without tildes. Because of the non-vanishing boundary
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condition, it is very difficult to find adjoint operator ofL(z). However, if we directly define
the adjoint state of8(z, ζ ) as that for bright solitons

8(z, ζ )A = 9(z, ζ )T(iσ2) =
(− ψ2

2(z, ζ ) ψ
2
1(z, ζ )

)
(73)

and introduce the corresponding inner product as

〈8(ζ ′)|8(ζ)〉 =
∫ ∞
−∞

8(z, ζ ′)A8(z, ζ ) dz (74)

we have orthogonality of the continuous spectrum:

〈8(ζ ′)|8(ζ)〉 = −a(ζ )22π (1− ρ2ζ−2)δ(ζ − ζ ′). (75)

Such a definition is thus appropriate. From equation (63), we have

〈8|(−σ2L
Tσ2) = −4κ(λ− λ1)〈8|. (76)

This means the corresponding adjoint operator ofL [6] should be

LA = −σ2L
Tσ2. (77)

We also find that

〈8(ζ1)|8(ζ1)〉 = 0 (78)

〈8(ζ1)|8̇(ζ1)〉 = −i(1− ρ2ζ−2
1 )ȧ(ζ1)

2 (79)

〈8̇(ζ1)|8(ζ1)〉 = −i(1− ρ2ζ−2
1 )ȧ(ζ1)

2 (80)

〈8̇(ζ1)|8̇(ζ1)〉 = −iȧ(ζ1)ä(ζ1)(1− ρ2ζ−2
1 )− i2ȧ(ζ1)

2 ρ2ζ−3
1 . (81)

In what follows we will prove that a complete set can be constructed with8(z, ζ ), 8(z, ζ1)

and8̇(z, ζ1).

4.2. Completeness

In Dirac notation, equation (72) reads

|f 〉 = − 1

2π

∫
C

dζ f (ζ )|8(ζ)〉 + f1|8(ζ1)〉 + g1|8̇(ζ1)〉. (82)

With equation (75)–(81), we have

f (ζ ) = 1

a(ζ )2(1− ρ2ζ−2)
〈8(ζ)|f 〉 (83)

g1 = i
1

ȧ(ζ1)2(1− ρ2ζ−2
1 )
〈8(ζ1)|f 〉 (84)

and

f1 = −i

{
ä(ζ1)

ȧ(ζ1)3(1− ρ2ζ−2
1 )
+ 2ρ2ζ−3

1

ȧ(ζ1)2(1− ρ2ζ−2
1 )2

}
〈8(ζ1)|f 〉

+i
1

ȧ(ζ1)2(1− ρ2ζ−2
1 )
〈8̇(ζ1)|f 〉. (85)
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Substituting the above results back in (82), we have

I = − 1

2π

∫
C

dζ
1

a(ζ )2(1− ρ2ζ−2)
|8(ζ)〉〈8(ζ)|

+ i
1

ȧ(ζ1)2(1− ρ2ζ−2
1 )

{|8̇(ζ1)〉〈8(ζ1)| + |8(ζ1)〉〈8̇(ζ1)|
}

− i

{
2ρ2ζ−3

1

ȧ(ζ1)2(1− ρ2ζ−2
1 )2
+ ä(ζ1)

ȧ(ζ1)3(1− ρ2ζ−2
1 )

}
|8(ζ1)〉〈8(ζ1)| (86)

or

δ(x − y) = − 1

2π

∫
C

dζ
1

a2(ζ )(1− ρ2ζ−2)
8(x, ζ )9T(y, ζ )(iσ2)

+ i
1

ȧ2(ζ1)(1− ρ2ζ−2
1 )

{
8̇(x, ζ1)9

T(y, ζ1)(iσ2)+8(x, ζ1)9̇
T(y, ζ1)(iσ2)

}

− i

{
2ρ2ζ−3

1

ȧ2(ζ1)(1− ρ2ζ−2
1 )2
+ ä(ζ1)

ȧ3(ζ1)(1− ρ2ζ−2
1 )

}
8(x, ζ1)9

T(y, ζ1)(iσ2).

(87)

That is, if equation (87) can be proved, completeness holds. As|ζ | → ∞
1

a2(ζ )
8(x, ζ )8T(y, ζ )(iσ2) = 9̃(x, ζ )9T(y, ζ )(iσ2)→ A(x, y, ζ ) (88)

where

A(x, y, ζ ) =
( −1 −ρ2ζ−2

ρ2ζ−2 ρ4ζ−4

)
e−i2κ(x−y). (89)

It is not difficult to prove

− 1

2π

∫
C

dζ
1

(1− ρ2ζ−2)
A(x, y, ζ ) = δ(x − y). (90)

Let

− 1

2π

∫
C

dζ
1

a2(ζ )(1− ρ2ζ−2)
8(x, ζ )9T(y, ζ ) = J (x, y)+ δ(x − y) (91)

where

J (x, y) = − 1

2π

∫
C

dζ
1

a2(ζ )(1− ρ2ζ−2)
{8(x, ζ )9T(y, ζ )(iσ2)− a2(ζ )A(x, y, ζ )}. (92)

The asymptotic behaviour of the integrand ofJ (x, y) on |ζ | → ∞ is

O(|ζ |−2)e−i2κ(x−y). (93)

When x < y, according to Jordan’s lemma, integration of the integrand ofJ (x, y) on a
sufficiently large semicircle on the upper half-plane ofζ is zero. Even whenx = y, the
asymptotic behaviour of O(|ζ |−2) also ensures such an integration to be zero. Hence, as
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x 6 y, a semicircle can be added to construct a closed contour integration in (92). In such
a contour, there is only one second-order poleζ = ζ1 contributed bya2(ζ ):

J (x, y)|x6y = −i
d

dζ

{
(ζ − ζ1)

2

a2(ζ )(1− ρ2ζ−2)
[8(x, ζ )9T(y, ζ )(iσ2)− a2(ζ )A(x, y, ζ )]

}∣∣∣∣
ζ=ζ1

= − i
1

ȧ2(ζ1)

d

dζ

{
1

1− ρ2ζ−2
8(x, ζ )9T(y, ζ )(iσ2)

}∣∣∣∣
ζ=ζ1

+ i
ä(ζ1)

ȧ3(ζ1)

{
1

1− ρ2ζ−2
8(x, ζ1)9

T(y, ζ1)(iσ2)

}

= − i
1

ȧ2(ζ1)(1− ρ2ζ−2
1 )
{8̇(x, ζ1)9

T(y, ζ1)(iσ2)+8(x, ζ1)9̇
T(y, ζ1)(iσ2)}

+ i

{
2ρ2ζ−3

1

ȧ2(ζ1)(1− ρ2ζ−2
1 )2
+ ä(ζ1)

ȧ3(ζ1)(1− ρ2ζ−2
1 )

}
8(x, ζ1)9

T(y, ζ1)(iσ2).

(94)

Then equation (87), i.e. completeness, is proved to be valid for the casex 6 y. As
x > y, according to Jordan’s lemma, we have to add a sufficiently large semicircle on the
lower half-plane to construct a closed contour in (92). Now the contour contains a pair
of simple polesζ = ±ρ on the real axis. In the reflectionless case, equation (26) yields
8(x, ζ ) = a2(ζ )9̃(x, ζ ) and9(x, ζ ) = a2(ζ )8̃(x, ζ ). Then

J (x, y)|x>y = − 1

2π

∫
C

dζ
1

ã2(ζ )(1− ρ2ζ−2)
{9̃(x, ζ )8̃T(y, ζ )(iσ2)− ã2(ζ )A(x, y, ζ )}

= i
d

dζ

{
(ζ − ζ 1)

2

ã2(ζ )(1− ρ2ζ−2)
[9̃(x, ζ )8̃T(y, ζ )(iσ2)− ã2(ζ )A(x, y, ζ )]

}∣∣∣∣∣
ζ=ζ 1

+ i
ρ

2ã2(ρ)
9̃(x, ρ)8̃T(y, ρ)(iσ2)− i

ρ

2ã2(−ρ)9̃(x,−ρ)8̃
T(y,−ρ)(iσ2)

= i
1

˙̃a2
(ζ 1)

d

dζ

{
1

1− ρ2ζ−2
9̃(x, ζ )8̃T(y, ζ )(iσ2)

}∣∣∣∣
ζ=ζ 1

+ i
¨̃a(ζ 1)

˙̃a3
(ζ 1)

{
1

1− ρ2ζ
−2
1

9̃(x, ζ1)8̃
T(y, ζ1)(iσ2)

}

+ i
ρ

2
9̃(x, ρ)8̃T(y, ρ)(iσ2)− i

ρ

2
9̃(x,−ρ)8̃T(y,−ρ)(iσ2)

= − i
1

˙̃a2
(ζ 1)(1− ρ2ζ

−2
1 )
{ ˙̃9(x, ζ1)8̃

T(y, ζ1)(iσ2)+ 9̃(x, ζ1)
˙̃
8

T
(y, ζ1)(iσ2)}

+ i

{
2ρ2ζ

−3
1

ȧ
2
(ζ 1)(1− ρ2ζ

−2
1 )2
+

¨̃a(ζ 1)

˙̃a3
(ζ 1)(1− ρ2ζ

−2
1 )

}
9̃(x, ζ 1)8̃

T(y, ζ 1)(iσ2)

+ i
ρ

2
8(x, ρ)9T(y, ρ)(iσ2)− i

ρ

2
8(x,−ρ)9T(y,−ρ)(iσ2). (95)
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Substituting the explicit form of the Jost solutions, we find

−i
d

dζ

{
(ζ − ζ1)

2

a2(ζ )(1− ρ2ζ−2)
8(x, ζ )9T(y, ζ )(iσ2)

}∣∣∣∣
ζ=ζ1

− i
d

dζ

{
(ζ − ζ 1)

2

ã2(ζ )(1− ρ2ζ−2)
9̃(x, ζ )8̃T(y, ζ )(iσ2)

}∣∣∣∣∣
ζ=ζ 1

= i
ρ

2
8(x, ρ)9T(y, ρ)(iσ2)− i

ρ

2
8(x,−ρ)9T(y,−ρ)(iσ2)

=
(
F G

G F

)
(96)

where

F = i
λ1

2
{sech2(k1z)+ sech2(k1y)− sech2(k1z) sech2(k1y)}

+k
2
{sech2(k1z) tanh(k1y)− sech2(k1y) tanh(k1z)} (97)

G = i
λ1

4
e−i2β1 sech2(k1z) sech2(k1y){cosh(2k1z)+ cosh(2k1y)}

−k1

4
e−i2β1 sech2(k1z) sech2(k1y){sinh(2k1z)+ sinh(2k1y)}. (98)

That is,J (x, y)|x6y = J (x, y)|x>y , i.e. completeness of the squared Jost solution is proved
for the one-soliton case.

5. Expansion in the complete set of squared Jost solutions

Under the transformation (52) equation (38) becomes

(i∂t −L(z))|q〉 = |R〉. (99)

|q〉 can be expanded in the obtained complete set

|q〉 = − 1

2π

∫
C

dζ q(ζ )|8(ζ)〉 + q1|8(ζ1)〉 + q2|8̇(ζ1)〉. (100)

With equations (61), (65) and (66), one can find

(i∂t −L(z))|q〉 = − 1

2π

∫
C

dζ [iqt (ζ )+ 4κ(λ− λ1)q(ζ )]|8(ζ)〉

+[iq1t − 4k2
1ζ
−1
1 q2]|8(ζ1)〉 + iq2t |8̇(ζ1)〉. (101)

Let 〈8(ζ1)|, 〈8̇(ζ1)| and〈8(ζ)| act on both sides of (99), respectively; then using the inner
products (75)–(81), we have

iq2t 〈8(ζ1)|8̇(ζ1)〉 = 〈8(ζ1)|R〉 (102)

(iq1t − 4k1ζ
−1
1 q2)〈8̇(ζ1)|8(ζ1)〉 + iq2t 〈8̇(ζ1)|8(ζ1)〉 = 〈8̇(ζ1)|R〉 (103)

iqt (ζ )+ 4κ(λ− λ1)q(ζ ) = ζ

2a2(ζ )
κ−1〈8(ζ)|R〉. (104)
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For the one-soliton case the effectiveR is independent oft in the TFR, the above equations
can be easily solved without introduction of Green’s function. From equation (102) with
the initial conditionq2|t=0 = 0, we have

q2 = −i
〈8(ζ1)|R〉
〈8(ζ1)|8̇(ζ1)〉

t. (105)

This is a so-called secular term which infinitely enlarges witht . The condition to diminish
this term

〈8(ζ1)|R〉 =
∫ +∞
−∞

dz 9T(z, ζ1)(iσ2)R = 0 (106)

is called a secular condition. Substituting equation (106) in (103), we have

q1 = −i
〈8̇(ζ1)|R〉
〈8̇(ζ1)|8(ζ1)〉

t (107)

which is another secular term, and the corresponding secular condition

〈8̇(ζ1)|R〉 =
∫ +∞
−∞

dz 9̇T(z, ζ1)(iσ2)R = 0 (108)

is obtained. Taking into account (106), this secular condition can be simplified as

〈�(ζ1)|R〉 =
∫ +∞
−∞

dz �A(z, ζ1)R = 0 (109)

where

�(z, ζ1)
A =

[
9̇T(ζ1)− i

1

k1
9T(z, ζ1)

]
(iσ2) (110)

has a simpler explicit expression (see the appendix).

6. The zeroth-order approximation and the adiabatic solution

Upon substitution of the explicit expression for the squared Jost solutions (see the appendix),
the secular conditions (106) and (109) become

i2k1eiβ1〈8(ζ1)|R〉 =
∫ +∞
−∞

dθ1 sech2 θ1Im {eiβ1R} = 0 (111)

k2
1ei2β1〈�(ζ1)|R〉 = λ1

ρ

∫ +∞
−∞

dθ1 θ1 sech2 θ1Im [eiβ1R]

−
∫ +∞
−∞

dθ1 sechθ1e−θ1Im [ei2β1R] = 0. (112)

The secular conditions (106) and (109) can also be written as

〈8(ζ1)|iu′1〉 = 〈8(ζ1)|r〉 (113)

and

〈�(ζ1)|iu′1〉 = 〈�(ζ1)|r〉. (114)

Since the free parameterx1, which should have been slowly time dependent has been
absorbed inz, a parameterzc must be introduced to consider the shift of the soliton centre,
i.e. θ1 in (4) should be written as

θ1 = k1(z− zc) (115)
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wherezc satisfies the initial condition

zc|t=0 = 0. (116)

With the following expressions:

θ ′1 =
k′1
k1
θ1− k1z

′
c (117)

eiβ1u1 = λ1+ ik1 tanhθ1 (118)

ei2β1u1 = ρ − k
2
1

ρ
sechθ1eθ1 + i

k1λ1

ρ
sechθ1eθ1 (119)

Im [eiβ1iu′1] = Im [i(eiβ1u1)
′ + β ′1(eiβ1u1)]

= Re [(eiβ1u1)
′] + β ′1Im [eiβ1u1] = λ′1+ k1 tanhθ1β

′
1 (120)

Im [ei2β1iu′1] = Im [i(ei2β1u1)
′ + 2β ′1(e

i2β1u1)]

= Re [(ei2β1u1)
′] + 2β ′1Im [ei2β1u1]

= ρ ′ − k1

ρ
k′1θ1 sech2 θ1+ k

3
1

ρ
z′c sech2 θ1− k2

1

ρ2
ρ ′ sechθ1eθ1 (121)

we find that

2ik1eiβ1〈8(ζ1)|iu′1〉 = 2λ′1 (122)

and

k2
1ei2β1〈�(ζ1)|iu′1〉 = −2Lk1ρ

′ + k2
1

ρ2
ρ ′ − 2

k3
1

ρ
z′c (123)

where 2L is the length of the system with 2L→∞. The 2L form divergence comes from
the fact that dark solitons have infinite background energy. Then we have

ελ′ = 1

2

∫ +∞
−∞

dθ1 sech2 θ1Im {eiβ1εr} (124)

and

−2Lk1ερ
′ + k2

1

ρ2
ερ ′ − 2

k3
1

ρ
εz′c =

λ1

ρ

∫ +∞
−∞

dθ1 θ1 sech2 θ1Im [eiβ1εr]

−
∫ +∞
−∞

dθ1 sechθ1e−θ1Im [ei2β1εr]. (125)

The secular condition (125) consists of two independent equations: the term diverging in
the form of 2L and the finite term in (125) must equal zero separately. We have got three
independent equations to determine the evolution of all soliton parameters because only two
out of λ1, k1, β1 andρ are independent. For vanishing perturbations (r → 0, as|x| → ∞),
there is no 2L term on the right-hand side of (125), thenρ ′ = 0. On the other hand,
for non-vanishing perturbations(r → constant, as|x| → ∞), 2L terms will appear in the
second integral on the right-hand side of (125),ρ ′ 6= 0.
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7. First-order correction

Now iu′1 has been determined by the secular conditions, and so has the effective sourceR.
Thenq(ζ ) can be easily found from

iqt (ζ )+ 4κ(λ− λ1)q(ζ ) = ζ

2a2(ζ )
κ−1〈8(ζ)|R〉 q|t=0 = 0 (126)

i.e.

εq(ζ, t) = ζ

8κ2a2(ζ )(λ− λ1)
[1− ei4κ(λ−λ1)t ]〈8(ζ)|εR〉 (127)

with

〈8(ζ)|εR〉 =
∫ +∞
−∞

dz 8(z, ζ )AεR

= −
∫ +∞
−∞

dz [ψ2
2(z, ζ )εR + ψ2

1(z, ζ )εR]

= − 1

k1

∫ +∞
−∞

dθ1 exp

(
i2
κ

k1
θ1

)
ε(R − ρ2ζ−2R)

+ i
2

ζ − ζ 1

∫ +∞
−∞

dθ1 exp

(
i2
κ

k1
θ1

)
sechθ1e−θ1ε(R − ρζ−1e−iβ1R)

+ i
2k1e−iβ1

(ζ − ζ 1)
2

∫ +∞
−∞

dθ1 exp

(
i2
κ

k1
θ1

)
sech2 θ1e−2θ1Im [eiβ1εR]. (128)

Thus the first-order correction can be obtained from

εq(z, t) = − 1

2π

∫
C

dζ εq(ζ, t)φ2
1(z, ζ ). (129)

Usually the integrand of (129) is very complex and is impossible to calculate exactly.

8. Example: a dark soliton evolution under damping

When a dark soliton is affected by damping

εr[u] = −iγ u1 (130)

it is obvious thatr[u] is non-vanishing andρ must evolve with time. By employing the
formulae provided above, one can find

εr[u] = −iγ u1 Im [eiβ1εr] = −γ λ1 (131)

Im [ei2β1εr] = −γρ + γ k
2
1

ρ
sechθ1eθ1 (132)

ελ′1 =
1

2

∫ +∞
−∞

dθ1 sech2 θ1(−γ λ1) = −γ λ1 (133)
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and

−2Lk1ερ
′ + k2

1

ρ2
ερ ′ − 2

k3
1

ρ
εz′c

= − γ λ
2
1

ρ

∫ +∞
−∞

dθ1 θ1 sech2 θ1+ γρ
∫ +∞
−∞

dθ1 sechθ1e−θ1

− γ k
2
1

ρ

∫ +∞
−∞

dθ1 sech2 θ1

= 2Lγρ − 2γ
k2

1

ρ
. (134)

Then

ελ′1 = −γ λ1 (135)

ερ ′ = −γρ (136)

−k1εz
′
c = − 1

2γ. (137)

These equations yield

λ1(t) = λ1(0)e
−γ t (138)

ρ(t) = ρ(0)e−γ t (139)

k1(t) = k1(0)e
−γ t (140)

β1(t) = β1(0) (141)

zc(t) = 1

2k1(0)
γ t. (142)

It can be verified that the so-called adiabatic method [18, 19] can also yield the same results
as above, except that forzc.

Thus the effective source is determined to be

εR = ε(r − iu′1) = −γe−iβ1k1(θ1+ 1
2) sech2 θ1. (143)

We have

Im [eiβ1εR] = 0 (144)

ε(R − ρ2ζ−2R) = −γ k1e−iβ1ζ−2(ζ 2− ζ 2
1 )(θ1+ 1

2) sech2 θ1 (145)

ε(R − ρζ−1e−iβ1R) = −γ k1e−iβ1ζ−1(ζ − ζ1)(θ1+ 1
2) sech2 θ1 (146)

〈8(ζ)|εR〉 = −γe−iβ1ζ−2(ζ 2− ζ 2
1 )

∫ +∞
−∞

dθ1 exp

(
i2
κ

k1
θ1

)(
θ1+ 1

2

)
sech2 θ1

+ iγ2k1e−iβ1ζ−1 ζ − ζ1

ζ − ζ 1

∫ +∞
−∞

dθ1 exp

(
i2
κ

k1
θ1

)(
θ1+ 1

2

)
sech3 θ1e−θ1

= γπe−iβ1ζ−2(ζ 2− ζ 2
1 ) cosech

(
π
κ

k1

){(
κ

k1
− i

)
+ iπ

κ

k1
coth

(
π
κ

k1

)}
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−γ i2πk1e−iβ1ζ−1 ζ − ζ1

ζ − ζ 1

cosech

(
π
κ

k1

)

×
{

i
κ2

k2
1

+ κ

k1
+ i − π κ

k1

(
κ

k1
+ i

)
coth

(
π
κ

k1

)}
. (147)

Then the first-order correctionq can be discussed with (129).

9. Conclusion

A direct perturbation approach for the dark one-soliton case is developed in this paper,
which is founded on a rigorous proof of the completeness of the squared Jost solutions.
A general procedure for adiabatic solutions is given by providing the evolution of all one-
soliton parameters. Difficulties caused by the infinite background energy are overcome.
A formula for calculating the first-order correction is also obtained.
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Appendix. Explicit expressions of Jost solutions and squared Jost solutions for
one-soliton case

φ1(x, t, ζ ) = ζ − ζ1

ζ − ζ 1

e−iβ1e−iκx + i
1

ζ − ζ 1

e−iβ1k1 sechθ1e−θ1e−iκx (A.1)

φ2(x, t, ζ ) = iρζ−1 ζ − ζ1

ζ − ζ 1

e−iβ1e−iκx − 1

ζ − ζ 1

k1 sechθ1e−θ1e−iκx (A.2)

ψ1(x, t, ζ ) = −iρζ−1eiκx − 1

ζ − ζ 1

e−iβ1k1 sechθ1e−θ1eiκx (A.3)

ψ2(x, t, ζ ) = eiκx − i
1

ζ − ζ 1

k1 sechθ1e−θ1eiκx. (A.4)

φ1(z, ζ ) = ζ − ζ1

ζ − ζ 1

e−iβ1e−iκz + i
1

ζ − ζ 1

e−iβ1k1 sechθ1e−θ1e−iκz (A.5)

φ2(z, ζ ) = iρζ−1 ζ − ζ1

ζ − ζ 1

e−iβ1e−iκz − 1

ζ − ζ 1

k1 sechθ1e−θ1e−iκz (A.6)

ψ1(z, ζ ) = −iρζ−1eiκz − 1

ζ − ζ 1

e−iβ1k1 sechθ1e−θ1eiκz (A.7)

ψ2(z, ζ ) = eiκz − i
1

ζ − ζ 1

k1 sechθ1e−θ1eiκz (A.8)

φ1(z, ζ1) = 1
2e−iβ1 sechθ1 (A.9)

φ2(z, ζ1) = 1
2i sechθ1 (A.10)
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ψ1(z, ζ1) = − 1
2ie−iβ1 sechθ1 (A.11)

ψ2(z, ζ1) = 1
2 sechθ1 (A.12)

φ̇1(z, ζ1) = −i
λ1

2k1ρ
e−i2β1θ1 sechθ1+ i

1

2k1
φ1(z, ζ1)− i

1

2k1
e−iβ1eθ1 (A.13)

φ̇2(z, ζ1) = λ1

2k1ρ
e−iβ1θ1 sechθ1+ i

1

2k1
φ2(z, ζ1)+ 1

2k1
e−i2β1eθ1 (A.14)

ψ̇1(z, ζ1) = λ1

2k1ρ
e−i2β1θ1 sechθ1+ i

1

2k1
ψ1(z, ζ1)− 1

2k1
e−i3β1e−θ1 (A.15)

ψ̇2(z, ζ1) = i
λ1

2k1ρ
e−iβ1θ1 sechθ1+ i

1

2k1
ψ2(z, ζ1)− i

1

2k1
e−θ1 (A.16)

8(z, ζ ) =
( {(ζ − ζ1)+ ik1 sechθ1e−θ1}2
{iρζ−1(ζ − ζ1)− eiβ1k1 sechθ1e−θ1}2

)
· e−i2β1e−i2κz

(ζ − ζ 1)
2

(A.17)

9(z, ζ ) =
( {iρζ−1(ζ − ζ 1)+ e−iβ1k1 sechθ1e−θ1}2

{(ζ − ζ 1)− ik1 sechθ1e−θ1}2
)
· ei2κz

(ζ − ζ 1)
2

(A.18)

8(z, ζ1) =
(

e−i2β1

−1

)
· 1

4
sech2 θ1 (A.19)

9(z, ζ1) =
(−e−i2β1

1

)
· 1

4
sech2 θ1 (A.20)

8̇(z, ζ1) = i

2k1

−
λ1

ρ
e−i3β1θ1 sech2 θ1+ 2φ2

1(z, ζ1)− e−i2β1 sechθ1eθ1

λ1

ρ
e−iβ1θ1 sech2 θ1+ 2φ2

2(z, ζ1)+ e−i2β1 sechθ1eθ1

 (A.21)

9̇(z, ζ1) = i

2k1

−
λ1

ρ
e−i3β1θ1 sech2 θ1+ 2ψ2

1(z, ζ1)+ e−i4β1 sechθ1e−θ1

λ1

ρ
e−iβ1θ1 sech2 θ1+ 2ψ2

2(z, ζ1)− sechθ1e−θ1

 (A.22)

9̇(z, ζ1)− i
1

k1
9(z, ζ1) = i

2k1

−
λ1

ρ
e−i3β1θ1 sech2 θ1+ e−i4β1 sechθ1e−θ1

λ1

ρ
e−iβ1θ1 sech2 θ1− sechθ1e−θ1

 . (A.23)
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